Towards a high performance geometry library for particle-detector simulations
نویسندگان
چکیده
Thread-parallelisation and single-instruction multiple data (SIMD) ”vectorisation” of software components in HEP computing has become a necessity to fully benefit from current and future computing hardware. In this context, the Geant-Vector/GPU simulation project aims to re-engineer current software for the simulation of the passage of particles through detectors in order to increase the overall event throughput. As one of the core modules in this area, the geometry library plays a central role and vectorising its algorithms will be one of the cornerstones towards achieving good CPU performance. Here, we report on the progress made in vectorising the shape primitives, as well as in applying new C++ template based optimisations of existing code available in the Geant4, ROOT or USolids geometry libraries. We will focus on a presentation of our software development approach that aims to provide optimised code for all use cases of the library (e.g., single particle and many-particle APIs) and to support different architectures (CPU and GPU) while keeping the code base small, manageable and maintainable. We report on a generic and templated C++ geometry library as a continuation of the AIDA USolids project. The experience gained with these developments will be beneficial to other parts of the simulation software, such as for the optimisation of the physics library, and possibly to other parts of the experiment software stack, such as reconstruction and analysis.
منابع مشابه
Progress with performance simulations of the CBM Silicon Tracking System
Efficient charged particle tracking and high momentum resolution are central performance requirements of the CBM Silicon Tracking System (STS). The aim of the ongoing layout studies is to design a highly granular and lowmass detector system which can track up to 1000 charged particles that are typically generated in one central Au+Au collision at 25 GeV/u projectile energy. A low-mass detector ...
متن کاملA performance study of the conceptual implementation of the GEM-tracking detector in Monte Carlo simulation
PANDA experiment (antiProton ANnihilation at DArmstadt) is one of the key projects of the future FAIR facilities to investigate the reactions of antiprotons with protons and nuclear targets. experiment is designed to serve as a completely extraordinary physical potential due to exploiting the availability of cold and high-intensity beams of antiprotons. One of the significant parts of the ...
متن کاملMicro Particles Transport and Deposition in Realistic Geometry of Human Upper Airways
Realistic geometry of human upper airways from mouth to the end of trachea was reconstructed by implementing the CT-Scan images of a male subject. A computational model for analyzing the airflow in the airways was developed and several simulations were performed. To capture the anisotropy of the inhaled airflow in the upper airways, the Reynolds stress transport model of turbulence was used ...
متن کاملEffective Parameters in Contact Mechanic for Micro/nano Particle Manipulation Based on Atomic Force Microscopy
The effect of geometry and material of the Micro/Nano particle on contact mechanic for manipulation was studied in this work based on atomic force microscopy. Hertz contact model simulation for EpH biological micro particle with spherical, cylindrical, and circular crowned roller shape was used to investigate the effect of geometry on contact simulation process in manipulation. Then, to val...
متن کاملToward an Object‐Oriented Core of the PPM Library
As high-performance computing (HPC) machines become increasingly complex, middleware-based programming paradigms have been particularly successful in reducing code development time and increasing simulation efficiency. The parallel particle-mesh (PPM) library is a state-of-the-art HPC middleware for parallel particle-mesh simulations. It is based on a concise set of six data and operation abstr...
متن کامل